572 research outputs found

    Diode pumped Nd:YAG laser development

    Get PDF
    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work

    Solar-pumped laser Final report

    Get PDF
    Solar pumped modulated laser to generate coherent radiation at optical wavelengths for long range, real time television data transmissio

    Giant microwave photoresistance of two-dimensional electron gas

    Full text link
    We measure microwave frequency (4-40 GHz) photoresistance at low magnetic field B, in high mobility 2D electron gas samples, excited by signals applied to a transmission line fabricated on the sample surface. Oscillatory photoresistance vs B is observed. For excitation at the cyclotron resonance frequency, we find an unprecedented, giant relative photoresistance (\Delta R)/R of up to 250 percent. The photoresistance is apparently proportional to the square root of applied power, and disappears as the temperature is increased.Comment: 4 pages, 3 figure

    TCR-engineered T cells: A model of inducible TCR expression to dissect the interrelationship between two TCRs

    Get PDF
    TCR gene modified T cells for adoptive therapy simultaneously express the Tg TCR and the endogenous TCR, which might lead to mispaired TCRs with harmful unknown specificity and to a reduced function of TCR-Tg T cells. We generated dual TCR T cells in two settings in which either TCR was constitutively expressed by a retroviral promoter while the second TCR expression was regulable by a Tet-on system. Constitutively expressed TCR molecules were reduced on the cell surface depending on the induced TCR expression leading to strongly hampered function. Besides that, using fluorescence resonance energy transfer we detected mispaired TCR dimers and different pairing behaviors of individual TCR chains with a mutual influence on TCR chain expression. The loss of function and mispairing could not be avoided by changing the TCR expression level or by introduction of an additional cysteine bridge. However, in polyclonal T cells, optimized TCR formats (cysteineization, codon optimization) enhanced correct pairing and function. We conclude from our data that (i) the level of mispairing depends on the individual TCRs and is not reduced by increasing the level of one TCR, and (ii) modifications (cysteineization, codon optimization) improve correct pairing but do not completely exclude mispairing (cysteineization)

    A Review of Target Mass Corrections

    Full text link
    With recent advances in the precision of inclusive lepton--nuclear scattering experiments, it has become apparent that comparable improvements are needed in the accuracy of the theoretical analysis tools. In particular, when extracting parton distribution functions in the large-x region, it is crucial to correct the data for effects associated with the nonzero mass of the target. We present here a comprehensive review of these target mass corrections (TMC) to structure functions data, summarizing the relevant formulas for TMCs in electromagnetic and weak processes. We include a full analysis of both hadronic and partonic masses, and trace how these effects appear in the operator product expansion and the factorized parton model formalism, as well as their limitations when applied to data in the x->1 limit. We evaluate the numerical effects of TMCs on various structure functions, and compare fits to data with and without these corrections.Comment: 41 pages, 13 figures; minor updates to match published versio

    Comparison of social resistance to Ebola response in Sierra Leone and Guinea suggests explanations lie in political configurations not culture

    Get PDF
    Sierra Leone and Guinea share broadly similar cultural worlds, straddling the societies of the Upper Guinea Coast with Islamic West Africa. There was, however, a notable difference in their reactions to the Ebola epidemic. As the epidemic spread in Guinea, acts of violent or everyday resistance to outbreak control measures repeatedly followed, undermining public health attempts to contain the crisis. In Sierra Leone, defiant resistance was rarer. Instead of looking to ‘culture’ to explain patterns of social resistance (as was common in the media and in the discourse of responding public health authorities) a comparison between Sierra Leone and Guinea suggests that explanations lie in divergent political practice and lived experiences of the state. In particular, the structures of authority in which the government-sanctioned epidemic response was channeled relate very differently to communities of trust in each country. Predicting and addressing social responses to epidemic control measures should assess such political-trust configurations when planning interventions

    High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots

    Full text link
    We measure the high magnetic field (BB) microwave conductivity, Reσxx\sigma_{xx}, of a high mobility 2D electron system containing an antidot array. Reσxx\sigma_{xx} vs frequency (ff) increases strongly in the regime of the fractional quantum Hall effect series, with Landau filling 1/3<ν<2/31/3<\nu<2/3. At microwave ff, Reσxx\sigma_{xx} vs BB exhibits a broad peak centered around ν=1/2\nu=1/2. On the peak, the 10 GHz Reσxx\sigma_{xx} can exceed its dc-limit value by a factor of 5. This enhanced microwave conductivity is unobservable for temperature T0.5T \gtrsim 0.5 K, and grows more pronounced as TT is decreased. The effect may be due to excitations supported by the antidot edges, but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex

    NEUTRINOS FROM PRIMORDIAL BLACK HOLES

    Full text link
    The emission of particles from black holes created in the early Universe has detectable astrophysical consequences. The most stringent bound on their abundance has been obtained from the absence of a detectable diffuse flux of 100 MeV photons. Further scrutiny of these bounds is of interest as they, for instance, rule out primordial black holes as a dark matter candidate. We here point out that these bounds can, in principle, be improved by studying the diffuse cosmic neutrino flux. Measurements of near-vertical atmospheric neutrino fluxes in a region of low geomagnetic latitude can provide a competitive bound. The most favorable energy to detect a possible diffuse flux of primordial black hole origin is found to be a few MeV. We also show that measurements of the diffuse ντ\nu _\tau flux is the most promising to improve the existing bounds deduced from gamma-ray measurements. Neutrinos from individual black hole explosions can be detected in the GeV-TeV energy region. We find that the kilometer-scale detectors, recently proposed, are able to establish competitive bounds.Comment: 19 pages plus 9 uuencoded and compressed postscript figure

    Terahertz magneto-optical spectroscopy of two-dimensional hole and electron systems

    Full text link
    We have used terahertz (THz) magneto-optical spectroscopy to investigate the cyclotron resonance in high mobility two-dimensional electron and hole systems. Our experiments reveal long-lived (~20 ps) coherent oscillations in the measured signal in the presence of a perpendicular magnetic field. The cyclotron frequency extracted from the oscillations varies linearly with magnetic field for a two-dimensional electron gas (2DEG), as expected. However, we find that the complex non-parabolic valence band structure in a two-dimensional hole gas (2DHG) causes the cyclotron frequency and effective mass to vary nonlinearly with the magnetic field, as verified by multiband Landau level calculations. This is the first time that THz magneto-optical spectroscopy has been used to study 2DHG, and we expect that these results will motivate further studies of these unique 2D nanosystems.Comment: 11 pages, 7 figure
    corecore